

Developing a Graphical Post Processor

MARCUS GOBERT

Master's Thesis
Information Engineering Programme
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Engineering
Göteborg 2007

All rights reserved. This publication is protected by law in accordance with “Lagen om
Upphovsrätt, 1960:729”. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior permission of the authors.

© Marcus Gobert, Göteborg 2007.

Abstract
This thesis focuses on the development of a graphical post processor – a plotting tool which is
used to display results from a solver used in gas exchange simulations. The tool is composed
of two general parts: a step-by-step wizard that is used for the creation of the desired plot and
a plot view which displays the selected data.

To ensure that the tool performs as expected in terms of functionality, performance, and
usability, the development process has followed a non standard iteratively based process. This
includes a pre-study followed by design, implementation, and testing phases.

The thesis will also discuss in-depth aspects of the design, such as the creation of software
specific diagrams, design patterns used and design changes made. A few examples will be
presented in order to demonstrate the functionality of the tool, and finally some conclusions
are made from the project.

Sammanfattning (Swedish abstract)
Denna rapport beskriver utvecklingen av en grafisk postprocessor – ett plottningsverktyg som
används för att visa resultat från en lösare för gasväxlingssimuleringar. Verktyget består av
två generella delar: en steg-för-steg-wizard vilken används för att skapa plottar, och en plotvy
som grafiskt visar den valda datan.

För att verktyget ska fungera som väntat när det gäller funktionalitet, prestanda och
användarvänlighet har utvecklingen följt en icke-standardiserad iterativt baserad process.
Detta har inkluderat en förstudie som följts av design-, implementation- och testfaser.

I rapporten diskuteras dessutom djupare aspekter såsom skapandet av mjukvaruspecifika
diagram, designmönster och designändringar. Några exempel presenteras för att demonstrera
verktygets funktionalitet och slutligen dras ett antal slutsatser från projektet.

 i

Preface
This thesis finalizes my studies at Chalmers University of Technology for a master’s degree
in Information Technology specializing in Software Development and Management. This
project was produced and conducted at Volvo Technology Corporation at Chalmers
Teknikpark in Göteborg from October 2006 to April 2007.

Acknowledgement
I would like to thank my supervisor Urban Flock for providing me with this project as well as
his invaluable support and suggestions made during the development.

Also, thanks to Sebastian Krausche, Christoffer Krausche, and Tobias Carlsson for providing
me with sufficient ICES models used in the testing phases.

 ii

Table of Contents

Abstract... i
Sammanfattning (Swedish abstract)... i
Preface.. ii
Acknowledgement ... ii
1 Introduction.. 1

1.1 ICES ... 1
1.2 ICES GUI... 1

2 Background .. 2
3 Goal ... 3
4 Analysis ... 3

4.1 Curves .. 3
4.2 Maps ... 3

5 Method .. 4
5.1 Requirements Specification .. 4

5.2 Software ... 5
5.2.1 Visual Studio 2005 Standard Edition ... 5
5.2.2 Qt ... 5

5.3 Time plan ... 5
6 Results and Design ... 5

6.1 Class Diagram ... 6
6.1.1 GUI Module .. 8
6.1.2 Storage Module... 10
6.1.3 Plot Module... 12

6.2 Sequence Diagrams ... 14
6.2.1 Create Curve... 14
6.2.2 Create Map ... 15
6.2.3 Update Plot ... 16

6.3 GUI Forms ... 17
6.3.1 Data Selector... 17
6.3.2 Item Editor.. 18
6.3.3 General Editor.. 19

6.4 Design Patterns.. 19
6.5 Design Changes ... 20
6.6 Testing .. 21
6.7 Plot Examples .. 21
6.8 Future Work .. 26

7 Conclusions ... 26
8 Dictionary ... 28
Appendix A .. 30
Appendix B .. 31
Appendix C .. 32

 iii

1 Introduction
Modern gas exchange simulation generally requires a large amount of input and output data.
In a simple running case, the user is often interested in a vast amount of fluctuating
parameters. A slight change in one parameter can have major impacts on hundreds of others
in many different parts of a simulation model. Therefore, in order to help users to manage the
simulation process, there is a need to graphically display the changes of the output as well as
comparing the data with other results. This project will focus on developing a plotting tool
that can be used to visualize the output of any number of variables. In addition, the tool also
needs to visualize special data structures used in the simulation process, called maps. The gas
exchange solver is called ICES. The tool will be created as an extension of ICES GUI – a
graphical interface for the solver.

1.1 ICES
ICES (Internal Combustion Engine Simulation) is a simulation program basically for 4-stroke
Otto and Diesel engines and is written in FORTRAN at Volvo. A model based structure
composed of components (engine objects), stations (measuring points), and connections
between these are read into the program, typically from text files or from a console
environment. Afterwards, the model is approximated in the solver using the options specified
by the user. Finally, the output data can be fetched from output files or by using console
commands.

Figure 1 shows a loaded model in the ICES solver.

Figure 1: An image of the ICES solver.

1.2 ICES GUI
ICES GUI is an extension of ICES written in C++ at Volvo Technology which allows the user
to graphically generate input models. Figure 2 displays ICES GUI with an open engine model.

 1

Models are composed of model objects which in turn are composed of components, stations,
or both. The model objects are connectable by using a mouse click environment. This
program has been created by the author, starting in 2003.

Figure 2: An image of ICES GUI.

2 Background
Editing text files in a text editor when creating or changing input models is generally a slow
process. Even though ICES has a logical input structure, the input data tend to get large, thus,
allowing for numerous logical errors as well as making it tedious to find the data that needs to
be modified.

ICES GUI was created in order to make things easier for the user by speeding up the creation
and manipulation of input models as well as reducing errors. Prior to this project however,
ICES GUI only supported pre processing functionality (generation of input models). Some
basic post processing (working with the data returned by ICES) was also supported in the
sense that scalars could be examined. However, since the output returned by ICES is in most
cases very large and most often varies depending on the time, there is a need to view the data
in a more graphical manner. For example, temperatures in various engine parts are rarely
constant during a cycle. Graphs fulfil the purpose of viewing varying data. However, in gas
exchange simulation, it’s often desired to examine how data varies depending on each other.
Therefore, there must be an easy way of viewing and comparing different output. This work
will focus on this problem.

 2

3 Goal
The goal is to extend ICES GUI to support a graphical interface that can be used to view and
compare varying output – a post processor. The tool must also include output features such as
printing and exporting to image files. The interface must be easy to use and require as little
work as possible to achieve the desired view.

4 Analysis
There are two major concepts that concern this project. The code needs to support both these
in order to successfully display the needed graphical output. These are curves and maps and
are explained in detail below.

4.1 Curves
In this project, curves are regarded as a sequence of 2-dimensional data points. These are
connected in their order using lines. Curves are needed when the post processor needs to
display the varying output of a value, such as cylinder pressure, during a cycle. A cycle is a
sequence of time steps in each of which the ICES solver calculates an arbitrary number of
variables selected by the user. These variables can be regarded as measuring points. The cycle
is most often a complete 4-stroke cycle, although, there might be cases that does not include
any cylinders.

As mentioned earlier, users often need to compare varying data. This can be done in two
general ways. The first method is to compare both variables to the crank angle by using the
respective variable as y values and the crank angle as x. This would require two curves. The
second method is to compare them directly to each other by using the first variable as x values
and the second one as y values. This would only require one curve. Note that any data could
be used on both x and y, e.g. the crank angle can also be y data.

In similar to other plotting tools the curves should be distinguishable by using colour coding.
Also, other visible properties should be available such as point markers, dashed lines or
hidden lines. Finally, the curves should be visible in a legend, when desired by the user, in
order to improve distinction further.

4.2 Maps
A map is a tabulated, numerical representation of a possibly multi dimensional structure. For
example a map can be a set of measurements on a device for describing its characteristics. In
ICES GUI maps for compressors and turbines are considered since these are often of great
importance in gas exchange simulations.

Compressor and turbine maps in ICES consist of a number of curves that can be divided into
two groups. The first group are curves that compose of 2-dimensional data. These make up a
number of sections and the boundaries of the map. The second group consists of efficiency
curves. These are level curves within the boundaries that are calculated in a 3-dimensional
structure where the level is the z axis data. Finally, there might be an optional operating curve.
This curve displays the operating points of the current cycle. In addition, this curve also needs
to display where the starting and ending points are located.

 3

The plot view needs to support visualization of compressor as well as turbine maps.
Compressor maps can represent both turbo compressors and displacement compressors.
Turbine maps can represent turbines of single entry, dual entry, or VGT types. Although
every one of the above types looks different, they are all generated using two or three
convenient 2-dimensional or 3-dimensional table structures from ICES. Since the table sizes
might differ and since the resolution (the number of rows and columns) might be low, the
tables are resized, normally to 50 rows and 50 columns. This is done by using bilinear
interpolation and extrapolation.

In order to make the curves within a map distinguishable, they will be both colouring coded
and have their own labels within the plot area. In addition, the legend will display all the
curves and put them into their respective categories.

5 Method
The project has not strictly followed any general software development process such as RUP
or XP, however an iterative work flow including pre-study, design, implementation, and
testing has been used. The main argument for this is that it was a one-man project. Although,
the project is quite large, there are still several benefits by constructing a proper design and
using proper testing methods.

The pre-study phase included creation of the software requirements specification, deciding
which tools and libraries to use and creating a time plan. All these aspects are described in
detail below in this chapter.

The design phase included creation of UML class and sequence diagrams and GUI models.
Diagrams and models like these facilitate an over all picture of how the different parts work
and how they interact. This is a critical part of the project since a good design often leads to
less code reconstruction and bugs. Therefore, a lot of time was spent on this phase. The
implementation phase however, was the largest and included the actual coding and creation of
the manual. Some reconstruction of the code had to be done due to various reasons.

Details of the design, implementation, and testing phases are presented in the Results and
Design chapter.

5.1 Requirements Specification
All functional requirements in the requirements specification were mainly developed together
with the project supervisor. Some ICES users also gave their views of what aspects program
should fulfil. The functional requirements were not described using use cases, but instead by
using a punctuated list. The reason for this is that the requirements were general and therefore
quite trivial. The non-functional requirements are usability and performance related. Usability
issues were dealt with in the design phase and performance issues were mainly handled
directly when coding.

The Requirements Specification is included in Appendix A.

 4

5.2 Software
The main software used during the development of the project, the IDE and the programming
library, are described below. In addition, other software such as Microsoft Excel 2005,
Microsoft Word 2005, Paint Shop Pro 5, FinePrint (a printer tool), and Notepad++ (a tabbed
text editor) were utilized. The revision control system utilized during the whole project was
subversion using the TortoiseSVN client for Windows.

5.2.1 Visual Studio 2005 Standard Edition
The IDE used for the project was Microsoft Visual Studio 2005 Standard Edition. This choice
was logical since this is a commonly used coding environment at Volvo Technology, and used
for the ICES GUI code.

5.2.2 Qt
Qt is a cross-platform programming library developed by Trolltech that mainly contains
classes for GUI-programming. However, it also covers areas such as networking, graphics,
serialization, and IO-streams. Additionally, it contains a verity of core classes for strings and
data containers. This project, however, will only focus on the GUI, graphics, and some of the
core classes. The Qt programming library is also used by the ICES GUI code.

5.3 Time plan
A general time plan was made up by estimating the time cost of the requirements in the
requirements specification. This was done directly after the pre-study and extended early in
the first design phase when more data had been collected of the actual size of the project. In
general, most time constraints have been met, though, there are some overdue in the first
iteration. The major reason for this was that the current version of Qt was a release candidate.
This version hade some minor bugs which had to be circumvented in order for the tool to
function as expected. The creation of maps in the second iteration is also overdue. This
process was harder than expected. These over dues delayed the work and therefore, the
creation of a standalone application (scheduled in iteration 3) was postponed for future
development.

The time plan is located in Appendix B.

6 Results and Design
This section contains the final design from all iterations. Firstly, the class diagrams created for
the tool are described in order to get an overview of the code. To provide an in-depth
description, a few sequence diagrams are explained for the most common operations within
the program. To provide a visual display of the graphical controls within the tool, the wizard
interface is described as well. Finally, general design concepts are described, such as design
patterns and testing.

 5

6.1 Class Diagram

Figure 3: The complete class diagram showing all 3 modules in the post processor.

Mo
de

lR
es

ult
sA

na
lyz

erV
iew

...

Co
mp

res
so

rM
ap

Da
ta

... ...

Re
su

lts
Ch

oo
se

rV
iew

...

Pl
ot

Pr
op

er
tie

sW
idg

et

...

Plo
tP

ro
pe

rtie
sV

iew
... ...

Plo
tG

rap
hic

sV
iew

... ...

Tu
rb

ine
Ma

pD
ata

... ...

Plo
tG

en
era

lVi
ew

...

Plo
tD

ata
Tr

ee

...

Re
su

lts
Vie

w

...

Cu
rve

Vie
w

...

Cu
rve

Da
ta

... ...

Ma
pD

ata

... ...

Gr
idD

ata
... ...

Gr
id

Plo
tD

ata
... ...

Cu
rve

Ax
is

Ax
isD

ata
... ...

Ax
isV

iew

...

Gr
idV

iew

...

Ma
pV

iew

...

Plo
tV

iew

...

Le
ge

nd

...

Tit
le ...

-ha
s a

-cr
ea

tes

-pl
otD

ata
_

-ax
es

_

-ha
s a

-re
su

lts
Vi

ew
Lis

t_

ha
s a

-gr
ids

-cu
rve

s

-ax
isD

ata
_

ha
s a

-pr
op

ert
ies

W
idg

et_

ha
s a

-cr
ea

tes
-ha

s a

ha
s a-m

ap
Da

ta_

-gr
idD

ata
_ -gr

idD
ata

_

ha
s a

-cu
rve

Da
ta_

-cu
rve

Da
ta_

-ax
isD

ata
_

-ha
s

-ha
s a

 6

The class diagram in Figure 3 shows the interaction of all classes created in the project,
however, due to space constraints, all functions, instance variables and Qt classes used in the
project have been removed.

The diagram has been divided into 3 modules coloured in red, green and blue. The red classes
belong to the storage module. These function as data storage as well as some data generation.
The green classes a part of the GUI module and inherit one or more Qt GUI classes. These
handle all user interaction in terms of viewing as well as manipulating the classes in the
storage module. Finally, the blue classes indicate the Plot module which handles the drawing
of the plot area. They inherit the Qt graphics view framework.

The modules are explained in detail below.

 7

6.1.1 GUI Module

Figure 4: A class diagram showing the relationships between the different classes in the GUI Module.

<<c
ons

tru
cto

r>>
+C

urv
eV

iew
(p

are
nt :

 QW
idg

et"
*"=

0)
<<d

est
ruc

tor
>>+

~C
urv

eV
iew

()
+up

dat
e(

cur
veD

ata
 : C

urv
eD

ata
"*"

) :
voi

d
+sa

ve(
) :

voi
d

<<s
ette

r>>
-se

tLin
eC

olo
r()

: vo
id

<<s
ette

r>>
-se

tMa
rke

rCo
lor(

) :
voi

d

<<c
ons

tru
cto

r>>
+M

apV
iew

(u
pda

teB
utto

n :
QP

ush
Bu

tton
"*",

 pa
ren

t : Q
Wid

get
"*"=

0)
<<d

est
ruc

tor
>>+

~M
apV

iew
()

+up
dat

e(
ma

pD
ata

 : M
apD

ata
"*"

) :
voi

d
+sa

ve(
) :

voi
d

-ad
dEf

fici
enc

y()
 : v

oid
-de

lEff
icie

ncy
() :

 vo
id

<<c
ons

tru
cto

r>>
+G

ridV
iew

(p
are

nt :
 QW

idg
et"

*"=
0)

<<d
est

ruc
tor

>>+
~G

ridV
iew

()
+up

dat
e(

grid
Da

ta :
 Gr

idD
ata

"*"
) :

voi
d

+sa
ve(

) :
voi

d
<<s

ette
r>>

-se
tMa

jorC
olo

r()
: vo

id
<<s

ette
r>>

-se
tMi

nor
Co

lor(
) :

voi
d

Cu
rve

Vie
w

Gr
idV

iew

Ma
pV

iew
Plo

tPr
op

ert
ies

Vie
w

-up
dat

eB
ack

gro
und

_ :
boo

l
-up

dat
eIte

ms
_ :

boo
l

<<c
ons

tru
cto

r>>
+Pl

otP
rop

ert
ies

Vie
w(

 pr
ope

rtie
sW

idg
et :

 Plo
tPr

ope
rtie

sW
idg

et"
*",

plo
tGr

aph
ics

Vie
w

: Pl
otG

rap
hic

sV
iew

"*",
 up

dat
eB

ack
gro

und
 : b

ool
, up

dat
eIte

ms
 : b

ool
)

<<d
est

ruc
tor

>>+
~Pl

otP
rop

ert
ies

Vie
w(

)
-sa

ve(
) :

voi
d

-ca
nce

l()
: vo

id

Plo
tDa

taT
ree

<<c
ons

tru
cto

r>>
+Pl

otD
ata

Tre
e(

xB
utto

n :
QP

ush
Bu

tton
"*",

 yB
utto

n :
QP

ush
Bu

tton
"*",

 pa
ren

t : Q
Wid

get
"*"=

0)
<<d

est
ruc

tor
>>+

~Pl
otD

ata
Tre

e()
+ad

dD
ata

(ite
m :

 QT
ree

Wid
get

Item
"*",

 ke
y :

QS
trin

g"&
")

: vo
id

+de
lete

Da
ta(

) :
voi

d
-mo

use
Pre

ssE
ven

t(e
ven

t : Q
Mo

use
Eve

nt"
*")

 : v
oid

-up
dat

eB
utto

ns(
 cu

rre
nt :

 QT
ree

Wid
get

Item
"*",

 pr
evi

ous
 : Q

Tre
eW

idg
etIt

em
"*"

) :
voi

d

Re
su

lts
Ch

oo
se

rV
iew

<<c
ons

tru
cto

r>>
+R

esu
ltsC

hoo
ser

Vie
w(

 mo
del

 : M
ode

l"*"
, pa

ren
t : Q

Wid
get

"*"
)

<<d
est

ruc
tor

>>+
~R

esu
ltsC

hoo
ser

Vie
w(

)
+up

dat
e()

 : v
oid

+up
dat

ePl
otS

ele
ctio

n()
 : v

oid
+up

dat
ePl

otIt
em

s()
 : v

oid
+up

dat
ePl

otG
ene

ral(
) :

voi
d

+pl
otD

ata
() :

 Plo
tDa

ta"
*"

-ad
dX

Da
ta(

) :
voi

d
-ad

dY
Da

ta(
) :

voi
d

-de
lete

Da
ta(

) :
voi

d
-up

dat
ePl

otIt
em

Vie
w(

 cu
rre

nt :
 QT

ree
Wid

get
Item

"*",
 pr

evi
ous

 : Q
Tre

eW
idg

etIt
em

"*"
) :

voi
d

-up
dat

eM
ap(

) :
voi

d
-ca

nce
l()

: vo
id

-ba
ck(

) :
voi

d
-ne

xt(
) :

voi
d

-fin
ish

() :
 vo

id
-up

dat
eB

utto
ns(

) :
voi

d
-up

dat
eC

urr
ent

Pag
e()

 : v
oid

-sa
veC

urr
ent

Pag
e()

 : v
oid

-ad
dTr

eeI
tem

(tr
ee

: Q
Tre

eW
idg

et"
*",

tex
t : Q

Str
ing

"&"
, da

ta :
 QS

trin
g"&

"=0
) :

 QT
ree

Wid
get

Item
"*"

-ad
dTr

eeI
tem

(ite
m :

 QT
ree

Wid
get

Item
"*",

 tex
t : Q

Str
ing

"&"
, da

ta :
 QS

trin
g"&

"=0
) :

 QT
ree

Wid
get

Item
"*"

-st
ore

Top
Da

ta(
 ite

m :
 QT

ree
Wid

get
Item

"*"
) :

voi
d

-st
ore

Su
bD

ata
(ite

m :
 QT

ree
Wid

get
Item

"*"
) :

voi
d

-st
ore

Plo
tIte

m(
item

 : Q
Tre

eW
idg

etIt
em

"*"
) :

voi
d

Mo
de

lRe
su

lts
An

aly
ze

rV
iew

<<c
ons

tru
cto

r>>
+M

ode
lRe

sul
tsA

nal
yze

rVi
ew

(m
ode

l : M
ode

l"*"
, pa

ren
t : Q

Wid
get

"*"=
0)

<<d
est

ruc
tor

>>+
~M

ode
lRe

sul
tsA

nal
yze

rVi
ew

()
+ne

wR
esu

ltsV
iew

() :
 vo

id
+re

mo
veR

esu
ltsV

iew
() :

 vo
id

+up
dat

e()
 : v

oid

Plo
tVi

ew

<<c
ons

tru
cto

r>>
+Pl

otV
iew

(p
lotD

ata
 : P

lotD
ata

"*",
 pa

ren
t : Q

Wid
get

"*"
)

<<d
est

ruc
tor

>>+
~Pl

otV
iew

()
+ad

dC
urv

e()
 : v

oid
+re

mo
veC

urv
e(

plo
tID

: in
t)

: vo
id

+re
siz

eEv
ent

(e
ven

t : Q
Re

siz
eEv

ent
"*"

) :
voi

d

Pl
otP

ro
pe

rti
esW

idg
et

<<c
ons

tru
cto

r>>
+Pl

otP
rop

ert
ies

Wid
get

(p
are

nt :
 QW

idg
et"

*"=
0)

<<d
est

ruc
tor

>>+
~Pl

otP
rop

ert
ies

Wid
get

()
+sa

ve(
) :

voi
d

Plo
tGe

ne
ral

Vie
w

<<c
ons

tru
cto

r>>
+Pl

otG
ene

ralV
iew

(p
are

nt :
 QW

idg
et"

*"=
0)

<<d
est

ruc
tor

>>+
~Pl

otG
ene

ralV
iew

()
+up

dat
e(

plo
tDa

ta :
 Plo

tDa
ta"

*")
 : v

oid
+sa

ve(
) :

voi
d

<<s
ette

r>>
-se

tTit
leL

oca
tion

Ena
ble

d(
ena

ble
d :

boo
l) :

 vo
id

<<s
ette

r>>
-se

tLe
gen

dLo
cat

ion
Ena

ble
d(

ena
ble

d :
boo

l) :
 vo

id
<<s

ette
r>>

-se
tEx

ter
iorC

olo
r()

: vo
id

<<s
ette

r>>
-se

tInt
erio

rCo
lor(

) :
voi

d
<<s

ette
r>>

-se
tTit

leC
olo

r()
: vo

id
<<s

ette
r>>

-se
tTit

leF
ont

() :
 vo

id
<<s

ette
r>>

-se
tLe

gen
dC

olo
r()

: vo
id

<<s
ette

r>>
-se

tLe
gen

dFo
nt(

) :
voi

d

Re
su

lts
Vie

w

<<c
ons

tru
cto

r>>
+R

esu
ltsV

iew
(p

are
nt :

 QW
idg

et"
*")

<<d
est

ruc
tor

>>+
~R

esu
ltsV

iew
()

+up
dat

e()
 : v

oid
+ad

dPl
otV

iew
(p

lotD
ata

 : P
lotD

ata
"*"

) :
voi

d
+ad

dS
cal

arV
iew

(s
cal

arD
ata

 : S
cal

arD
ata

"*"
) :

voi
d

+re
mo

veP
lotV

iew
(p

lotI
nde

x :
int

) :
voi

d
+re

mo
veS

cal
arV

iew
(s

cal
arIn

dex
 : in

t)
: vo

id

Ax
isV

iew

<<c
ons

tru
cto

r>>
+A

xis
Vie

w(
 pa

ren
t : Q

Wid
get

"*"=
0)

<<d
est

ruc
tor

>>+
~A

xis
Vie

w(
)

+up
dat

e(
axi

sD
ata

 : A
xis

Da
ta"

*")
 : v

oid
+sa

ve(
) :

voi
d

<<s
ette

r>>
-se

tNa
me

Fon
t()

: vo
id

<<s
ette

r>>
-se

tCo
lor(

) :
voi

d
<<s

ette
r>>

-se
tLa

bel
sFo

nt(
) :

voi
d

-co
nta

ins
-ha

s a

-co
nta

ins
 a

-ha
s a

has
 a

-cr
eat

es

-ha
s a

has
 a

-co
nta

ins

-ha
s a

 8

 9

The GUI Module classes are explained in detail below. The relationships between them as
well as their internal structures are shown in Figure 4. Every class inherits a Qt GUI
component (not shown in the class diagram).

ResultsChooserView
This is the main widget class for choosing which data to plot and how to plot it. It is a wizard
structure containing 3 pages. The first page is the actual data chooser consisting of 2 graphical
trees. The first tree contains the data than can be added to the plot and the second tree contains
the data that has been chosen for the current plot. The second page is an index of the plot
items (curves, axes, grids and maps) that has been generated by the system using the chosen
plot data. These items can be modified accordingly. The last page handles the general plot
options such as the title and the legend. These options are optional.

The 3 pages can be navigated backwards and forwards by using the “Back” and “Next”
buttons. In addition, the plot operation can be cancelled by pressing the “Cancel” button. The
plot is generated when the “Finish” button is pressed.

PlotDataTree
This is the graphical tree that contains the data that can be plotted. It inherits QTreeWidget
(not shown by diagram) which enables various tree functions from Qt. This class also receives
a pointer to the output structure from ICES, ModelResults. The tree scans the data and
translates it into a user friendly tree structure using QTreeWidgetItems.

PlotView
PlotView represents the graphical window that contains the plot graphics class,
PlotGraphicsView. It is created by ResultsChooserView when the user presses the “Finish”
button. This view can be used in 2 modes; selection mode and measure mode. In selection
mode the view will allow the user to select specific items and change their corresponding
properties. Measure mode enables mouse tracking and allows the user to click within the plot
area and get specific readings at the mouse position. This information is shown on the axes.

PlotPropertiesView
This is the graphical window used by PlotView to create an appropriate options window when
the user wishes to change an item in the plot area by receiving a PlotPropertiesWidget.

PlotPropertiesWidget
PlotPropertiesWidget is an abstract class that enables PlotPropertiesView to call the save and
update functions on the current properties view. This class is extended by CurveView,
AxisView, GridView, MapView and PlotGeneralView.

CurveView, AxisView, GridView, MapView, PlotGeneralView
These classes create appropriate widgets to change the specified plot. In addition, they
implement PlotPropertiesWidget with update and save functions. They are created by both
ResultsChooserView which enables modification in the wizard and PlotView which enables
modification when the plot has been created.

ResultsView, ModelResultsAnalyzerView
These classes enable the use of several views when plotting or listing scalars in the same
window. They have not yet been implemented. Read section “Future Work” for more
information on these.

6.1.2 Storage Module

Figure 5: A class diagram of the Storage Module showing their structure and relationships.

<<
co

ns
tru

ct
or

>>
+M

ap
Da

ta
(n

am
e

: Q
St

rin
g"

&"
, o

pe
ra

tin
gP

oin
ts

 :
QV

ar
Le

ng
th

Ar
ra

y<
Po

int
2D

>"
&"

, in
fo

 :
QV

ar
Le

ng
th

Ar
ra

y<
Po

int
3D

I>"
&"

, d
at

a
: Q

Va
rL

en
gt

hA
rra

y<
Po

int
3D

>,
 d

at
aF

ac
to

r :
 P

oin
t3

D"
&"

, e
xt

ra
po

lat
ion

 :
Po

int
3D

I"&
")

<<
de

st
ru

ct
or

>>
+~

Ma
pD

at
a(

)
<<

se
tte

r>
>+

se
tN

am
e(

 n
am

e
: Q

St
rin

g"
&"

)
: v

oid
<<

se
tte

r>
>+

se
tE

ffi
cie

nc
yL

ev
els

(e
ffi

cie
nc

yL
ev

els
 :

QL
ist

<d
ou

ble
>"

&"
)

: v
oid

+n
am

e(
) :

 Q
St

rin
g

+n
or

ma
lC

ur
ve

sN
am

e(
) :

 Q
St

rin
g

+le
ve

lC
ur

ve
sN

am
e(

) :
 Q

St
rin

g
+e

ffi
cie

nc
yL

ev
els

()
: Q

Lis
t<

do
ub

le>
+x

Ax
is(

) :
 A

xis
Da

ta
"*"

+y
Ax

is(
) :

 A
xis

Da
ta

"*"
+n

or
ma

lC
ur

ve
(n

 :
int

)
: C

ur
ve

Da
ta

"*"
+le

ve
lC

ur
ve

(l
 :

int
)

: C
ur

ve
Da

ta
"*"

+m
isc

Cu
rv

e(
 m

 :
int

)
: C

ur
ve

Da
ta

"*"
+g

rid
()

: G
rid

Da
ta

"*"
+n

um
be

rO
fE

ffi
cie

nc
yL

ev
els

()
: in

t
+n

um
be

rO
fN

or
ma

lC
ur

ve
s(

) :
 in

t
+n

um
be

rO
fL

ev
elC

ur
ve

s(
) :

 in
t

+n
um

be
rO

fM
isc

Cu
rv

es
()

: in
t

+h
or

izo
nt

alR
es

olu
tio

n(
) :

 in
t

+v
er

tic
alR

es
olu

tio
n(

) :
 in

t
+c

alc
ula

te
Re

so
lut

ion
(r

es
X

: in
t,

re
sY

 :
int

)
: v

oid
#c

lea
rM

ap
()

: v
oid

#c
al

cu
la

te
M

in
M

ax
()

: v
oi

d
#c

al
cu

la
te

No
rm

al
Da

ta
()

: v
oi

d
#c

al
cu

la
te

Le
ve

lD
at

a(
) :

 vo
id

#c
re

at
eA

xe
s(

) :
 vo

id
#c

re
at

eN
or

m
al

Cu
rv

es
()

: v
oi

d
#c

re
at

eL
ev

el
Cu

rv
es

()
: v

oi
d

#c
re

at
eM

is
cC

ur
ve

s(
) :

 vo
id

#c
re

at
eG

rid
()

: v
oid

#c
alc

No
rm

alC
olo

r(
ind

ex
 :

int
)

: Q
Co

lor
#c

alc
Le

ve
lC

olo
r(

ind
ex

 :
int

)
: Q

Co
lor

#x
Da

ta
(r

ow
 :

int
, c

ol
: in

t)
 :

do
ub

le
#y

Da
ta

(r
ow

 :
int

, c
ol

: in
t)

 :
do

ub
le

#z
Da

ta
(r

ow
 :

int
, c

ol
: in

t)
 :

do
ub

le
#x

Da
ta

(r
ow

 :
int

, c
ol

: in
t,

co
lO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#y
Da

ta
(r

ow
 :

int
, c

ol
: in

t,
co

lO
ffs

et
 :

do
ub

le
) :

 d
ou

ble
#z

Da
ta

(r
ow

 :
int

, c
ol

: in
t,

co
lO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#x
Da

ta
(r

ow
 :

int
, c

ol
: in

t,
ro

w
Of

fs
et

 :
do

ub
le,

 c
olO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#y
Da

ta
(r

ow
 :

int
, c

ol
: in

t,
ro

w
Of

fs
et

 :
do

ub
le,

 c
olO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#z
Da

ta
(r

ow
 :

int
, c

ol
: in

t,
ro

w
Of

fs
et

 :
do

ub
le,

 c
olO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#x
Da

ta
(t

ab
le

: in
t,

ro
w

 :
int

, c
ol

: in
t,

ta
ble

Of
fs

et
 :

do
ub

le,
 ro

w
Of

fs
et

 :
do

ub
le,

 c
olO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#y
Da

ta
(t

ab
le

: in
t,

ro
w

 :
int

, c
ol

: in
t,

ta
ble

Of
fs

et
 :

do
ub

le,
 ro

w
Of

fs
et

 :
do

ub
le,

 c
olO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#z
Da

ta
(t

ab
le

: in
t,

ro
w

 :
int

, c
ol

: in
t,

ta
ble

Of
fs

et
 :

do
ub

le,
 ro

w
Of

fs
et

 :
do

ub
le,

 c
olO

ffs
et

 :
do

ub
le

) :
 d

ou
ble

#x
Ta

ble
Da

ta
(t

ab
le

: in
t)

 :
do

ub
le

#y
Ta

ble
Da

ta
(t

ab
le

: in
t)

 :
do

ub
le

#z
Ta

ble
Da

ta
(t

ab
le

: in
t)

 :
do

ub
le

#x
Ro

w
Da

ta
(r

ow
 :

int
)

: d
ou

ble
#y

Ro
w

Da
ta

(r
ow

 :
int

)
: d

ou
ble

#z
Ro

w
Da

ta
(r

ow
 :

int
)

: d
ou

ble
#x

Co
lD

at
a(

 c
ol

: in
t)

 :
do

ub
le

#y
Co

lD
at

a(
 c

ol
: in

t)
 :

do
ub

le
#z

Co
lD

at
a(

 c
ol

: in
t)

 :
do

ub
le

#x
Le

ve
lD

at
a(

 ro
w

 :
int

, c
ol

: in
t)

 :
do

ub
le

#y
Le

ve
lD

at
a(

 ro
w

 :
int

, c
ol

: in
t)

 :
do

ub
le

#z
Le

ve
lD

at
a(

 ro
w

 :
int

, c
ol

: in
t)

 :
do

ub
le

#c
lea

rL
ine

Da
ta

()
: v

oid
<<

se
tte

r>
>#

se
tL

ine
(r

ow
 :

int
, c

ol
: in

t,
lin

e
: b

oo
l)

 :
vo

id
#li

ne
(r

ow
 :

int
, c

ol
: in

t)
 :

bo
ol

#s
ta

rtL
ine

(s
ro

w
 :

int
, r

ow
 :

int
"*"

, c
ol

: in
t"*

")
 :

bo
ol

#n
ex

tL
ine

(r
ow

 :
int

"*"
, c

ol
: in

t"*
")

 :
bo

ol
#z

Po
int

(r
ow

 :
int

, c
ol

: in
t,

va
lue

 :
do

ub
le,

 d
es

tP
oin

t :
 P

oin
t2

D"
*"

) :
 v

oid

<<
co

ns
tru

ct
or

>>
+A

xis
Da

ta
(t

yp
e

: A
xis

Ty
pe

, n
am

e
: Q

St
rin

g"
&"

, m
inV

alu
e

: P
oin

t2
D"

&"
, m

ax
Va

lue
 :

Po
int

2D
"&

")
<<

de
st

ru
ct

or
>>

+~
Ax

isD
at

a(
)

+c
alc

ula
te

Int
er

va
l()

 :
vo

id
<<

se
tte

r>
>+

se
tL

oc
at

ion
(l

oc
at

ion
 :

Ax
isL

oc
at

ion
)

: v
oid

<<
se

tte
r>

>+
se

tM
ini

mu
m(

 m
ini

mu
m

: d
ou

ble
)

: v
oid

<<
se

tte
r>

>+
se

tM
ax

im
um

(m
ax

im
um

 :
do

ub
le

) :
 v

oid
<<

se
tte

r>
>+

se
tM

ajo
rS

te
p(

 m
ajo

rS
te

p
: d

ou
ble

)
: v

oid
<<

se
tte

r>
>+

se
tM

ino
rS

te
p(

 m
ino

rS
te

p
: d

ou
ble

)
: v

oid
<<

se
tte

r>
>+

se
tS

ho
w

Ma
jor

St
ep

(s
ho

w
Ma

jor
 :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tS

ho
w

Mi
no

rS
te

p(
 s

ho
w

Mi
no

r :
 b

oo
l)

 :
vo

id
<<

se
tte

r>
>+

se
tC

olo
r(

co
lor

 :
QC

olo
r"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tS
ty

le(
 s

ty
le

: A
xis

St
yle

)
: v

oid
<<

se
tte

r>
>+

se
tW

idt
h(

 w
idt

h
: in

t)
 :

vo
id

<<
se

tte
r>

>+
se

tS
ho

w
Na

me
(s

ho
w

Na
me

 :
bo

ol
) :

 v
oid

<<
se

tte
r>

>+
se

tN
am

e(
 n

am
e

: Q
St

rin
g"

&"
)

: v
oid

<<
se

tte
r>

>+
se

tN
am

eL
oc

at
ion

(n
am

eL
oc

at
ion

 :
Ax

isN
am

eL
oc

at
ion

)
: v

oid
<<

se
tte

r>
>+

se
tN

am
eF

on
t(

na
me

Fo
nt

 :
QF

on
t"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tN
am

eF
on

tS
ize

(n
am

eF
on

tS
ize

 :
int

)
: v

oid
<<

se
tte

r>
>+

se
tN

am
eF

on
tA

ut
oS

ize
(n

am
eF

on
tA

ut
oS

ize
 :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tN

am
eR

ot
at

ion
(n

am
eR

ot
at

ion
 :

do
ub

le
) :

 v
oid

<<
se

tte
r>

>+
se

tS
ho

w
La

be
ls(

 s
ho

w
La

be
ls

: b
oo

l)
 :

vo
id

<<
se

tte
r>

>+
se

tL
ab

els
Fo

nt
(l

ab
els

Fo
nt

 :
QF

on
t"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tL
ab

els
Fo

nt
Si

ze
(l

ab
els

Fo
nt

Si
ze

 :
int

)
: v

oid
<<

se
tte

r>
>+

se
tL

ab
els

Fo
nt

Au
to

Si
ze

(l
ab

els
Fo

nt
Au

to
Si

ze
 :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tL

ab
els

Ro
ta

tio
n(

 la
be

lsR
ot

at
ion

 :
do

ub
le

) :
 v

oid
<<

se
tte

r>
>+

se
tO

ffs
et

(o
ffs

et
 :

int
)

: v
oid

<<
se

tte
r>

>+
se

tM
ax

Ro
ta

te
dO

ffs
et

(o
ffs

et
 :

int
)

: v
oid

+t
yp

e(
) :

 A
xis

Ty
pe

+m
inV

alu
e(

) :
 P

oin
t2

D"
*"

+m
ax

Va
lue

()
: P

oin
t2

D"
*"

+lo
ca

tio
n(

) :
 A

xis
Lo

ca
tio

n
+m

ini
mu

m(
) :

 d
ou

ble
+m

ax
im

um
()

: d
ou

ble
+m

ajo
rS

te
p(

) :
 d

ou
ble

+m
ino

rS
te

p(
) :

 d
ou

ble
+s

ho
w

Ma
jor

()
: b

oo
l

+s
ho

w
Mi

no
r()

 :
bo

ol
+c

olo
r()

 :
QC

olo
r

+s
ty

le(
) :

 A
xis

St
yle

+w
idt

h(
) :

 in
t

+s
ho

w
Na

me
()

: b
oo

l
+n

am
e(

) :
 Q

St
rin

g
+n

am
eL

oc
at

ion
()

: A
xis

Na
me

Lo
ca

tio
n

+n
am

eF
on

t()
 :

QF
on

t
+n

am
eF

on
tA

ut
oS

ize
()

: b
oo

l
+n

am
eR

ot
at

ion
()

: d
ou

ble
+s

ho
w

La
be

ls(
) :

 b
oo

l
+la

be
lsF

on
t()

 :
QF

on
t

+la
be

lsF
on

tA
ut

oS
ize

()
: b

oo
l

+la
be

lsR
ot

at
ion

()
: d

ou
ble

+o
ffs

et
()

: in
t

+m
ax

Ro
ta

te
dO

ffs
et

()
: in

t

Ax
is

Da
ta

#y
Ax

is_

Tu
rb

in
eM

ap
Da

ta

-n
or

ma
lC

ols
_

: in
t

-ta
ble

ZI
nd

ex
_

: in
t

-ta
ble

XI
nd

ex
_

: in
t

-ta
ble

YI
nd

ex
_

: in
t

-ta
ble

Po
sit

ion
_

: d
ou

ble
-ta

ble
ZO

ffs
et

_
: d

ou
ble

-ta
ble

XO
ffs

et
_

: d
ou

ble
-ta

ble
YO

ffs
et

_
: d

ou
ble

-tw
inE

nt
ry

_
: b

oo
l

-v
ar

iab
leG

eo
me

try
_

: b
oo

l
-n

or
ma

liz
ed

To
rq

ue
_

: b
oo

l

<<
co

ns
tru

ct
or

>>
+T

ur
bin

eM
ap

Da
ta

(n
am

e
: Q

St
rin

g"
&"

, o
pe

ra
tin

gP
oin

ts
 :

QV
ar

Le
ng

th
Ar

ra
y<

Po
int

2D
>"

&"
, in

fo
 :

QV
ar

Le
ng

th
Ar

ra
y<

Po
int

3D
I>"

&"
, d

at
a

: Q
Va

rL
en

gt
hA

rra
y<

Po
int

3D
>,

 d
at

aF
ac

to
r :

 P
oin

t3
D"

&"
, e

xt
ra

po
lat

ion
 :

Po
int

3D
I"&

",
ta

ble
Po

sit
ion

 :
do

ub
le,

 tw
inE

nt
ry

 :
bo

ol,
 v

ar
iab

leG
eo

me
try

 :
bo

ol,
 n

or
ma

liz
ed

To
rq

ue
 :

bo
ol

)
<<

de
st

ru
ct

or
>>

+~
Tu

rb
ine

Ma
pD

at
a(

)
-c

alc
ula

te
Mi

nM
ax

()
: v

oid
-c

alc
ula

te
No

rm
alD

at
a(

) :
 v

oid
-c

alc
ula

te
Le

ve
lD

at
a(

) :
 v

oid
-c

re
at

eA
xe

s(
) :

 v
oid

-c
re

at
eN

or
ma

lC
ur

ve
s(

) :
 v

oid
-c

re
at

eL
ev

elC
ur

ve
s(

) :
 v

oid
-c

re
at

eM
isc

Cu
rv

es
()

: v
oid

Co
m

pr
es

so
rM

ap
Da

ta

-n
or

ma
lR

ow
s_

 :
int

-d
isp

lac
em

en
t_

 :
bo

ol

<<
co

ns
tru

ct
or

>>
+C

om
pr

es
so

rM
ap

Da
ta

(n
am

e
: Q

St
rin

g"
&"

, o
pe

ra
tin

gP
oin

ts
 :

QV
ar

Le
ng

th
Ar

ra
y<

Po
int

2D
>"

&"
, in

fo
 :

QV
ar

Le
ng

th
Ar

ra
y<

Po
int

3D
I>"

&"
, d

at
a

: Q
Va

rL
en

gt
hA

rra
y<

Po
int

3D
>,

 d
at

aF
ac

to
r :

 P
oin

t3
D"

&"
, e

xt
ra

po
lat

ion
 :

Po
int

3D
I"&

",
dis

pla
ce

me
nt

 :
bo

ol
)

<<
de

st
ru

ct
or

>>
+~

Co
mp

re
ss

or
Ma

pD
at

a(
)

-c
alc

ula
te

Mi
nM

ax
()

: v
oid

-c
alc

ula
te

No
rm

alD
at

a(
) :

 v
oid

-c
alc

ula
te

Le
ve

lD
at

a(
) :

 v
oid

-c
re

at
eA

xe
s(

) :
 v

oid
-c

re
at

eN
or

ma
lC

ur
ve

s(
) :

 v
oid

-c
re

at
eL

ev
elC

ur
ve

s(
) :

 v
oid

-c
re

at
eM

isc
Cu

rv
es

()
: v

oid

<<
co

ns
tru

ct
or

>>
+P

lot
Da

ta
(t

itle
 :

QS
tri

ng
"&

",
mo

de
lR

es
ult

s
: M

od
elR

es
ult

s"
*"

)
<<

de
st

ru
ct

or
>>

+~
Plo

tD
at

a(
)

<<
se

tte
r>

>+
se

tT
itle

(t
itle

 :
QS

tri
ng

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
Vi

sib
le(

 v
isi

ble
 :

bo
ol"

&"
)

: v
oid

<<
se

tte
r>

>+
se

tL
eg

en
dV

isi
ble

(v
isi

ble
 :

bo
ol"

&"
)

: v
oid

<<
se

tte
r>

>+
se

tT
itle

Po
sit

ion
(p

os
itio

n
: P

os
itio

n
) :

 v
oid

<<
se

tte
r>

>+
se

tL
eg

en
dP

os
itio

n(
 p

os
itio

n
: P

os
itio

n
) :

 v
oid

<<
se

tte
r>

>+
se

tT
itle

Al
ign

me
nt

(a
lig

nm
en

t :
 A

lig
nm

en
t)

 :
vo

id
<<

se
tte

r>
>+

se
tL

eg
en

dA
lig

nm
en

t(
ali

gn
me

nt
 :

Al
ign

me
nt

)
: v

oid
<<

se
tte

r>
>+

se
tE

xt
er

ior
Co

lor
(c

olo
r :

 Q
Co

lor
"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tIn
te

rio
rC

olo
r(

co
lor

 :
QC

olo
r"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tT
itle

Co
lor

(c
olo

r :
 Q

Co
lor

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tL

eg
en

dC
olo

r(
co

lor
 :

QC
olo

r"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
Fo

nt
(f

on
t :

 Q
Fo

nt
"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tL
eg

en
dF

on
t(

fo
nt

 :
QF

on
t"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tT
itle

Fo
nt

Si
ze

(s
ize

 :
int

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tL

eg
en

dF
on

tS
ize

(s
ize

 :
int

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
Ro

ta
tio

n(
 ro

ta
tio

n
: in

t"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tL

eg
en

dR
ot

at
ion

(r
ot

at
ion

 :
int

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
W

idt
h(

 w
idt

h
: in

t"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
Ro

ta
te

dW
idt

h(
 ro

ta
te

dW
idt

h
: in

t"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
He

igh
t(

he
igh

t :
 in

t"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tT

itle
Ro

ta
te

dH
eig

ht
(r

ot
at

ed
He

igh
t :

 in
t"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tT
itle

Of
fs

et
(o

ffs
et

 :
int

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tL

eg
en

dW
idt

h(
 w

idt
h

: in
t"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tL
eg

en
dR

ot
at

ed
W

idt
h(

 ro
ta

te
dW

idt
h

: in
t"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tL
eg

en
dH

eig
ht

(h
eig

ht
 :

int
"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tL
eg

en
dR

ot
at

ed
He

igh
t(

ro
ta

te
dH

eig
ht

 :
int

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tL

eg
en

dO
ffs

et
(o

ffs
et

 :
int

"&
")

 :
vo

id
+s

to
re

Da
ta

(n
am

e
: Q

St
rin

g"
&"

, s
ou

rc
e

: D
at

aS
ou

rc
e,

 d
es

tin
at

ion
 :

Da
ta

De
st

ina
tio

n,
 d

at
aIn

de
x

: in
t)

 :
vo

id
+c

re
at

eC
ur

ve
(n

am
e

: Q
St

rin
g"

&"
)

: v
oid

+c
re

at
eC

om
pr

es
so

rM
ap

(n
am

e
: Q

St
rin

g,
 c

om
pr

es
so

r :
 C

om
po

ne
nt

"*"
)

: v
oid

+c
re

at
eT

ur
bin

eM
ap

(n
am

e
: Q

St
rin

g,
 tu

rb
ine

 :
Co

mp
on

en
t"*

")
 :

vo
id

+r
es

et
()

: v
oid

+t
itle

()
: Q

St
rin

g
+e

xt
er

ior
Co

lor
()

: Q
Co

lor
+in

te
rio

rC
olo

r()
 :

QC
olo

r
+t

itle
Co

lor
()

: Q
Co

lor
+le

ge
nd

Co
lor

()
: Q

Co
lor

+t
itle

Fo
nt

()
: Q

Fo
nt

+le
ge

nd
Fo

nt
()

: Q
Fo

nt
+t

itle
Ro

ta
tio

n(
) :

 in
t

+le
ge

nd
Ro

ta
tio

n(
) :

 in
t

+t
itle

Vi
sib

le(
) :

 b
oo

l
+le

ge
nd

Vi
sib

le(
) :

 b
oo

l
+t

itle
Po

sit
ion

()
: P

os
itio

n
+le

ge
nd

Po
sit

ion
()

: P
os

itio
n

+t
itle

Al
ign

me
nt

()
: A

lig
nm

en
t

+le
ge

nd
Al

ign
me

nt
()

: A
lig

nm
en

t
+t

itle
W

idt
h(

) :
 in

t
+t

itle
Ro

ta
te

dW
idt

h(
) :

 in
t

+t
itle

He
igh

t()
 :

int
+t

itle
Ro

ta
te

dH
eig

ht
()

: in
t

+t
itle

Of
fs

et
()

: in
t

+le
ge

nd
W

idt
h(

) :
 in

t
+le

ge
nd

Ro
ta

te
dW

idt
h(

) :
 in

t
+le

ge
nd

He
igh

t()
 :

int
+le

ge
nd

Ro
ta

te
dH

eig
ht

()
: in

t
+le

ge
nd

Of
fs

et
()

: in
t

+c
ur

ve
Da

ta
(c

ur
ve

ID
 :

int
)

: C
ur

ve
Da

ta
"*"

+in
te

rp
ola

te
dC

ur
ve

Da
ta

(i
nt

er
po

lat
ed

Cu
rv

eID
 :

int
)

: In
te

rp
ola

te
dC

ur
ve

Da
ta

"*"
+a

xis
Da

ta
(a

xis
ID

 :
int

)
: A

xis
Da

ta
"*"

+g
rid

Da
ta

(g
rid

ID
 :

int
)

: G
rid

Da
ta

"*"
+m

ap
Da

ta
(m

ap
ID

 :
int

)
: M

ap
Da

ta
"*"

+n
um

be
rO

fC
ur

ve
s(

) :
 in

t
+n

um
be

rO
fIn

te
rp

ola
te

dC
ur

ve
s(

) :
 in

t
+n

um
be

rO
fA

xis
()

: in
t

+n
um

be
rO

fG
rid

s(
) :

 in
t

+n
um

be
rO

fM
ap

s(
) :

 in
t

-c
alc

Co
lor

()
: Q

Co
lor

Pl
ot

Da
ta

-ti
tle

Vi
sib

le_
 :

bo
ol

-le
ge

nd
Vi

sib
le_

 :
bo

ol
-ti

tle
Po

sit
ion

_
: P

os
itio

n
-le

ge
nd

Po
sit

ion
_

: P
os

itio
n

-ti
tle

Al
ign

me
nt

_
: A

lig
nm

en
t

-le
ge

nd
Al

ign
me

nt
_

: A
lig

nm
en

t
-ti

tle
Ro

ta
tio

n_
 :

int
-le

ge
nd

Ro
ta

tio
n_

 :
int

-ti
tle

W
idt

h_
 :

int
-ti

tle
Ro

ta
te

dW
idt

h_
 :

int
-ti

tle
He

igh
t_

 :
int

-ti
tle

Ro
ta

te
dH

eig
ht

_
: in

t
-ti

tle
Of

fs
et

_
: in

t
-le

ge
nd

W
idt

h_
 :

int
-le

ge
nd

Ro
ta

te
dW

idt
h_

 :
int

-le
ge

nd
He

igh
t_

 :
int

-le
ge

nd
Ro

ta
te

dH
eig

ht
_

: in
t

-le
ge

nd
Of

fs
et

_
: in

t
-x

Da
ta

Ch
an

ge
d_

 :
bo

ol
-y

Da
ta

Ch
an

ge
d_

 :
bo

ol

M
ap

Da
ta

#r
es

olu
tio

nX
_

: in
t

#r
es

olu
tio

nY
_

: in
t

#p
Mi

n_
 :

do
ub

le
#p

Ma
x_

 :
do

ub
le

#e
Mi

n_
 :

do
ub

le
#e

Ma
x_

 :
do

ub
le

-ty
pe

_
: A

xis
Ty

pe
-lo

ca
tio

n_
 :

Ax
isL

oc
at

ion
-m

ajo
rS

te
p_

 :
do

ub
le

-m
ino

rS
te

p_
 :

do
ub

le
-s

ho
w

Ma
jor

_
: b

oo
l

-s
ho

w
Mi

no
r_

 :
bo

ol
-s

ty
le_

 :
Ax

isS
ty

le
-w

idt
h_

 :
int

-s
ho

w
Na

me
_

: b
oo

l
-n

am
eL

oc
at

ion
_

: A
xis

Na
me

Lo
ca

tio
n

-n
am

eF
on

tA
ut

oS
ize

_
: b

oo
l

-n
am

eR
ot

at
ion

_
: d

ou
ble

-s
ho

w
La

be
ls_

 :
bo

ol
-la

be
lsF

on
tA

ut
oS

ize
_

: b
oo

l
-la

be
lsR

ot
at

ion
_

: d
ou

ble
-o

ffs
et

_
: in

t
-m

ax
Ro

ta
te

dO
ffs

et
_

: in
t

Cu
rv

eD
at

a

-s
ho

w
St

ar
tN

am
e_

 :
bo

ol
-s

ho
w

En
dN

am
e_

 :
bo

ol
-lin

eS
ty

le_
 :

Lin
eS

ty
le

-m
ar

ke
rS

ty
le_

 :
Ma

rk
er

St
yle

-s
ta

rtM
ar

ke
rS

ty
le_

 :
Ma

rk
er

St
yle

-e
nd

Ma
rk

er
St

yle
_

: M
ar

ke
rS

ty
le

-lin
eW

idt
h_

 :
int

-m
ar

ke
rW

idt
h_

 :
int

-s
ta

rtM
ar

ke
rW

idt
h_

 :
int

-e
nd

Ma
rk

er
W

idt
h_

 :
int

-z
Va

lue
_

: in
t

<<
co

ns
tru

ct
or

>>
+C

ur
ve

Da
ta

(n
am

e
: Q

St
rin

g"
&"

, p
oin

ts
 :

QV
ar

Le
ng

th
Ar

ra
y<

Po
int

2D
>"

&"
, x

Ax
is

: A
xis

Da
ta

"*"
, y

Ax
is

: A
xis

Da
ta

"*"
)

<<
de

st
ru

ct
or

>>
+~

Cu
rv

eD
at

a(
)

<<
se

tte
r>

>+
se

tN
am

e(
 n

am
e

: Q
St

rin
g"

&"
)

: v
oid

<<
se

tte
r>

>+
se

tS
ho

w
St

ar
tN

am
e(

 s
ho

w
 :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tS

ho
w

En
dN

am
e(

 s
ho

w
 :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tS

ta
rtM

ar
ke

rC
olo

r(
co

lor
 :

QC
olo

r"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tE

nd
Ma

rk
er

Co
lor

(c
olo

r :
 Q

Co
lor

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tS

ta
rtM

ar
ke

rS
ty

le(
 s

ty
le

: M
ar

ke
rS

ty
le

) :
 v

oid
<<

se
tte

r>
>+

se
tE

nd
Ma

rk
er

St
yle

(s
ty

le
: M

ar
ke

rS
ty

le
) :

 v
oid

<<
se

tte
r>

>+
se

tS
ta

rtM
ar

ke
rW

idt
h(

 w
idt

h
: in

t)
 :

vo
id

<<
se

tte
r>

>+
se

tE
nd

Ma
rk

er
W

idt
h(

 w
idt

h
: in

t)
 :

vo
id

<<
se

tte
r>

>+
se

tL
ine

Co
lor

(c
olo

r :
 Q

Co
lor

"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tL

ine
St

yle
(s

ty
le

: L
ine

St
yle

)
: v

oid
<<

se
tte

r>
>+

se
tL

ine
W

idt
h(

 w
idt

h
: in

t)
 :

vo
id

<<
se

tte
r>

>+
se

tM
ar

ke
rC

olo
r(

co
lor

 :
QC

olo
r"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tM
ar

ke
rS

ty
le(

 s
ty

le
: M

ar
ke

rS
ty

le
) :

 v
oid

<<
se

tte
r>

>+
se

tM
ar

ke
rW

idt
h(

 w
idt

h
: in

t)
 :

vo
id

<<
se

tte
r>

>+
se

tZ
Va

lue
(z

Va
lue

 :
int

)
: v

oid
+n

am
e(

) :
 Q

St
rin

g
+d

at
aP

oin
ts

()
: Q

Va
rL

en
gt

hA
rra

y<
Po

int
2D

>"
*"

+m
inV

alu
e(

) :
 P

oin
t2

D
+m

ax
Va

lue
()

: P
oin

t2
D

+s
ho

w
St

ar
tN

am
e(

) :
 b

oo
l

+s
ho

w
En

dN
am

e(
) :

 b
oo

l
+n

am
eF

on
t()

 :
QF

on
t

+li
ne

Co
lor

()
: Q

Co
lor

+m
ar

ke
rC

olo
r()

 :
QC

olo
r

+s
ta

rtM
ar

ke
rC

olo
r()

 :
QC

olo
r

+e
nd

Ma
rk

er
Co

lor
()

: Q
Co

lor
+li

ne
W

idt
h(

) :
 in

t
+s

ta
rtM

ar
ke

rW
idt

h(
) :

 in
t

+e
nd

Ma
rk

er
W

idt
h(

) :
 in

t
+m

ar
ke

rW
idt

h(
) :

 in
t

+z
Va

lue
()

: in
t

+li
ne

St
yle

()
: L

ine
St

yle
+m

ar
ke

rS
ty

le(
) :

 M
ar

ke
rS

ty
le

+s
ta

rtM
ar

ke
rS

ty
le(

) :
 M

ar
ke

rS
ty

le
+e

nd
Ma

rk
er

St
yle

()
: M

ar
ke

rS
ty

le

<<
co

ns
tru

ct
or

>>
+G

rid
Da

ta
(x

Ax
is

: A
xis

Da
ta

"*"
, y

Ax
is

: A
xis

Da
ta

"*"
)

<<
de

st
ru

ct
or

>>
+~

Gr
idD

at
a(

)
<<

se
tte

r>
>+

se
tM

ajo
rC

olo
r(

co
lor

 :
QC

olo
r"&

")
 :

vo
id

<<
se

tte
r>

>+
se

tM
ino

rC
olo

r(
co

lor
 :

QC
olo

r"&
")

 :
vo

id
<<

se
tte

r>
>+

se
tM

ajo
rS

ty
le(

 s
ty

le
: G

rid
St

yle
)

: v
oid

<<
se

tte
r>

>+
se

tM
ino

rS
ty

le(
 s

ty
le

: G
rid

St
yle

)
: v

oid
<<

se
tte

r>
>+

se
tM

ajo
rW

idt
h(

 w
idt

h
: in

t)
 :

vo
id

<<
se

tte
r>

>+
se

tM
ino

rW
idt

h(
 w

idt
h

: in
t)

 :
vo

id
<<

se
tte

r>
>+

se
tS

ho
w

Ma
jor

Ho
riz

on
ta

l(
sh

ow
Ma

jor
Ho

riz
on

ta
l :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tS

ho
w

Mi
no

rH
or

izo
nt

al(
 s

ho
w

Mi
no

rH
or

izo
nt

al
: b

oo
l)

 :
vo

id
<<

se
tte

r>
>+

se
tS

ho
w

Ma
jor

Ve
rti

ca
l(

sh
ow

Ma
jor

Ve
rti

ca
l :

bo
ol

) :
 v

oid
<<

se
tte

r>
>+

se
tS

ho
w

Mi
no

rV
er

tic
al(

 s
ho

w
Mi

no
rV

er
tic

al
: b

oo
l)

 :
vo

id
+m

ajo
rC

olo
r()

 :
QC

olo
r

+m
ino

rC
olo

r()
 :

QC
olo

r
+m

ajo
rS

ty
le(

) :
 G

rid
St

yle
+m

ino
rS

ty
le(

) :
 G

rid
St

yle
+m

ajo
rW

idt
h(

) :
 in

t
+m

ino
rW

idt
h(

) :
 in

t
+s

ho
w

Ma
jor

Ho
riz

on
ta

l()
 :

bo
ol

+s
ho

w
Mi

no
rH

or
izo

nt
al(

) :
 b

oo
l

+s
ho

w
Ma

jor
Ve

rti
ca

l()
 :

bo
ol

+s
ho

w
Mi

no
rV

er
tic

al(
) :

 b
oo

l
+m

ajo
rH

or
izo

nt
alS

te
p(

) :
 d

ou
ble

+m
ino

rH
or

izo
nt

alS
te

p(
) :

 d
ou

ble
+m

ajo
rV

er
tic

alS
te

p(
) :

 d
ou

ble
+m

ino
rV

er
tic

alS
te

p(
) :

 d
ou

ble
+m

inV
alu

e(
) :

 P
oin

t2
D

+m
ax

Va
lue

()
: P

oin
t2

D

Gr
id

Da
ta

-m
ajo

rS
ty

le_
 :

Gr
idS

ty
le

-m
ino

rS
ty

le_
 :

Gr
idS

ty
le

-m
ajo

rW
idt

h_
 :

int
-m

ino
rW

idt
h_

 :
int

-s
ho

w
Ma

jor
Ho

riz
on

ta
l_

: b
oo

l
-s

ho
w

Mi
no

rH
or

izo
nt

al_
 :

bo
ol

-s
ho

w
Ma

jor
Ve

rti
ca

l_
: b

oo
l

-s
ho

w
Mi

no
rV

er
tic

al_
 :

bo
ol

#g
rid

_

-c
on

ta
ins

-h
as

 a

-c
on

ta
ins

-h
as

 a

#x
Ax

is_

-c
on

ta
ins

-h
as

 a

-c
on

ta
ins

-h
as

 a

 10

As can be seen in Figure 5, the classes in the Storage Module contain many functions and
instance variables. The reason for this is due to the extensive amount of options that can be
made to the plot view. Therefore, most of the functions are set and get operations on the
instance variables used for the properties of the plot view.

PlotData
PlotData is the main data container for the plot, however, it also acts as a factory for the
creation of all other sub containers; CurveData, AxisData, GridData, CompressorMapData
and TurbineMapData. The data is fetched using a pointer to the output structure from ICES,
ModelResults. In addition, it contains optional general plot data such as a title and a legend.

CurveData, AxisData, GridData
These are the data containers for the plot items. They contain visual options such as colour,
font and location. The CurveData class also contains the data points read from the ICES
output structure. Each item is given a reference to a corresponding data container and then the
plot items are read from the containers and drawn accordingly.

MapData
This is an abstract data container used by the maps. Incoming data is translated to a more
convenient 2-dimensional table structure. In addition, several other values, such as
multiplication factors and size constraints are stored in appropriate lists. Finally, it provides
protected functions for the inheritance classes for convenient retrieval of the data. This class
has been generically programmed to allow for easy supplementation of new map types.

CompressorMapData, TurbineMapData
These are large classes who facilitate the creation of the actual map data and items using the
specified options. The final map data is calculated from the data in MapData using bilinear
interpolation and extrapolation. The level curves are generated by using the same point search
algorithm used by ICES.

 11

6.1.3 Plot Module

Figure 6: A class diagram showing the structure of the Plot Module.

<<
co

ns
tru

cto
r>>

+G
rid

(g
rid

Da
ta

: G
rid

Da
ta"

*",
 da

ta1
 : i

nt,
 da

ta2
 : i

nt,
 pa

ren
t :

QG
rap

hic
sIt

em
"*"

=0
, s

ce
ne

 : Q
Gr

ap
hic

sS
ce

ne
"*"

=0
)

<<
de

str
uc

tor
>>

+~
Gr

id(
)

+u
pd

ate
Lim

its
(m

inL
imi

t :
Po

int
2D

"&
", m

ax
Lim

it :
 Po

int
2D

"&
")

 : v
oid

+p
ain

t(p
ain

ter
 : Q

Pa
int

er"
*",

 op
tio

n :
 Q

Sty
leO

pti
on

Gr
ap

hic
sIt

em
"*"

, w
idg

et
: Q

Wi
dg

et"
*"=

0)
 : v

oid
+b

ou
nd

ing
Re

ct(
) :

QR
ec

tF{
qu

ery
}

+s
ha

pe
()

: Q
Pa

int
erP

ath
{qu

ery
}

+ty
pe

()
: in

t{q
ue

ry}

<<
co

ns
tru

cto
r>>

+A
xis

(a
xis

Da
ta

: A
xis

Da
ta"

*",
 da

ta1
 : i

nt,
 da

ta2
 : i

nt,
 pa

ren
t :

QG
rap

hic
sIt

em
"*"

=0
, s

ce
ne

 : Q
Gr

ap
hic

sS
ce

ne
"*"

=0
)

<<
de

str
uc

tor
>>

+~
Ax

is(
)

+u
pd

ate
Lim

its
(m

inL
imi

t :
Po

int
2D

"&
", m

ax
Lim

it :
 Po

int
2D

"&
")

 : v
oid

+u
pd

ate
Mo

us
e(

mo
us

eP
os

 : P
oin

t2D
"&

", i
ns

ide
 : b

oo
l, d

ow
n :

 bo
ol

) :
vo

id
+p

ain
t(p

ain
ter

 : Q
Pa

int
er"

*",
 op

tio
n :

 Q
Sty

leO
pti

on
Gr

ap
hic

sIt
em

"*"
, w

idg
et

: Q
Wi

dg
et"

*"=
0)

 : v
oid

+b
ou

nd
ing

Re
ct(

) :
QR

ec
tF{

qu
ery

}
+s

ha
pe

()
: Q

Pa
int

erP
ath

{qu
ery

}
+ty

pe
()

: in
t{q

ue
ry}

+c
alc

ula
teW

idt
hO

ffs
et(

 ax
isD

ata
 : A

xis
Da

ta"
*",

 of
fse

t :
int

"*"
) :

 vo
id

-re
ve

rse
Y_

 : i
nt

Cu
rve

<<
co

ns
tru

cto
r>>

+C
urv

e(
cu

rve
Da

ta
: C

urv
eD

ata
"*"

, d
ata

1 :
 in

t, d
ata

2 :
 in

t, p
are

nt
: Q

Gr
ap

hic
sIt

em
"*"

=0
, s

ce
ne

 : Q
Gr

ap
hic

sS
ce

ne
"*"

=0
)

<<
de

str
uc

tor
>>

+~
Cu

rve
()

+u
pd

ate
Lim

its
(m

inL
imi

t :
Po

int
2D

"&
", m

ax
Lim

it :
 Po

int
2D

"&
")

 : v
oid

+p
ain

t(p
ain

ter
 : Q

Pa
int

er"
*",

 op
tio

n :
 Q

Sty
leO

pti
on

Gr
ap

hic
sIt

em
"*"

, w
idg

et
: Q

Wi
dg

et"
*"=

0)
 : v

oid
+b

ou
nd

ing
Re

ct(
) :

QR
ec

tF{
qu

ery
}

+s
ha

pe
()

: Q
Pa

int
erP

ath
{qu

ery
}

+ty
pe

()
: in

t{q
ue

ry}

-m
ou

se
Ins

ide
_ :

 bo
ol

-m
ou

se
Do

wn
_ :

 bo
ol

-re
ve

rse
Y_

 : i
nt

-ax
isL

oc
ati

on
_ :

 in
t

-la
be

lDi
rec

tio
n_

 : i
nt

Ax
is

+c
alc

ula
teH

eig
htO

ffs
et(

 ax
isD

ata
 : A

xis
Da

ta"
*",

 of
fse

t :
int

"*"
) :

 vo
id

+()

Gr
id

-re
ve

rse
Y_

 : i
nt

Plo
tG

rap
hic

sV
iew

-m
ou

se
Do

wn
_ :

 bo
ol

-m
ea

su
reM

od
e_

 : b
oo

l

+u
pd

ate
Ax

es
(m

ou
se

Po
s :

 Q
Po

int
"&

")
 : v

oid
+z

oo
mIN

()
: v

oid
+z

oo
mO

ut(
) :

vo
id

+c
los

eP
rop

ert
ies

(p
lot

Pro
pe

rtie
sV

iew
 : P

lot
Pro

pe
rtie

sV
iew

"*"
, u

pd
ate

d :
 bo

ol,
 up

da
teB

ac
kg

rnd
 : b

oo
l, u

pd
ate

Itm
s :

 bo
ol

) :
vo

id
#d

raw
Ba

ck
gro

un
d(

pa
int

er
: Q

Pa
int

er"
*",

 re
ct

: Q
Re

ctF
"&

")
 : v

oid
#m

ou
se

Pre
ss

Ev
en

t(e
ve

nt
: Q

Mo
us

eE
ve

nt"
*"

) :
vo

id
#m

ou
se

Mo
ve

Ev
en

t(e
ve

nt
: Q

Mo
us

eE
ve

nt"
*"

) :
vo

id
#m

ou
se

Re
lea

se
Ev

en
t(e

ve
nt

: Q
Mo

us
eE

ve
nt"

*"
) :

vo
id

#m
ou

se
Do

ub
leC

lick
Ev

en
t(e

ve
nt

: Q
Mo

us
eE

ve
nt"

*"
) :

vo
id

<<
se

tte
r>>

-se
tSe

lec
tio

nM
od

e()
 : v

oid
<<

se
tte

r>>
-se

tM
ea

su
reM

od
e()

 : v
oid

-op
en

Ge
ne

ral
Pro

pe
rtie

s()
 : v

oid
-op

en
Cu

rve
Pro

pe
rtie

s()
 : v

oid
-op

en
Ax

isP
rop

ert
ies

()
: v

oid
-op

en
Gr

idP
rop

ert
ies

()
: v

oid
-op

en
Ma

pP
rop

ert
ies

()
: v

oid
-ex

po
rtC

lipb
oa

rd(
) :

vo
id

-ex
po

rtIm
ag

e()
 : v

oid
-pr

int
()

: v
oid

-cl
ea

rS
ele

cti
on

()
: v

oid
-se

lec
tIte

m(
 po

s :
 Q

Po
int

"&
")

 : v
oid

-op
en

Po
pu

pM
en

u(
po

s :
 Q

Po
int

"&
")

 : v
oid

-op
en

Pro
pe

rtie
s(

po
s :

 Q
Po

int
"&

")
 : v

oid
-ca

lcu
lat

eM
arg

in(
) :

int
-ca

lcu
lat

eF
on

tSi
ze

()
: in

t
-re

siz
eE

ve
nt(

 ev
en

t :
QR

es
ize

Ev
en

t"*
")

 : v
oid

Le
ge

nd

<<
co

ns
tru

cto
r>>

+L
eg

en
d(

plo
tDa

ta
: P

lot
Da

ta"
*",

 pa
ren

t :
QG

rap
hic

sIt
em

"*"
=0

, s
ce

ne
 : Q

Gr
ap

hic
sS

ce
ne

"*"
=0

)
<<

de
str

uc
tor

>>
+~

Le
ge

nd
()

+u
pd

ate
Lim

its
(m

inL
imi

t :
Po

int
2D

"&
", m

ax
Lim

it :
 Po

int
2D

"&
")

 : v
oid

+p
ain

t(p
ain

ter
 : Q

Pa
int

er"
*",

 op
tio

n :
 Q

Sty
leO

pti
on

Gr
ap

hic
sIt

em
"*"

, w
idg

et
: Q

Wi
dg

et"
*"=

0)
 : v

oid
+b

ou
nd

ing
Re

ct(
) :

QR
ec

tF{
qu

ery
}

+ty
pe

()
: in

t{q
ue

ry}
+c

alc
ula

teW
idt

hO
ffs

et(
 pl

otD
ata

 : P
lot

Da
ta"

*",
 of

fse
t :

int
"*"

) :
 vo

id
+c

alc
ula

teH
eig

htO
ffs

et(
 pl

otD
ata

 : P
lot

Da
ta"

*",
 of

fse
t :

int
"*"

) :
 vo

id
-ca

lcu
lat

eM
ax

Wi
dth

(p
lot

Da
ta

: P
lot

Da
ta"

*"
) :

int
-ca

lcu
lat

eM
ax

He
igh

t(p
lot

Da
ta

: P
lot

Da
ta"

*"
) :

int

Tit
le

<<
co

ns
tru

cto
r>>

+T
itle

(p
lot

Da
ta

: P
lot

Da
ta"

*",
 pa

ren
t :

QG
rap

hic
sIt

em
"*"

=0
, s

ce
ne

 : Q
Gr

ap
hic

sS
ce

ne
"*"

=0
)

<<
de

str
uc

tor
>>

+~
Tit

le(
)

+u
pd

ate
Lim

its
(m

inL
imi

t :
Po

int
2D

"&
", m

ax
Lim

it :
 Po

int
2D

"&
")

 : v
oid

+p
ain

t(p
ain

ter
 : Q

Pa
int

er"
*",

 op
tio

n :
 Q

Sty
leO

pti
on

Gr
ap

hic
sIt

em
"*"

, w
idg

et
: Q

Wi
dg

et"
*"=

0)
 : v

oid
+b

ou
nd

ing
Re

ct(
) :

QR
ec

tF{
qu

ery
}

+ty
pe

()
: in

t{q
ue

ry}
+c

alc
ula

teW
idt

hO
ffs

et(
 pl

otD
ata

 : P
lot

Da
ta"

*",
 of

fse
t :

int
"*"

) :
 vo

id
+c

alc
ula

teH
eig

htO
ffs

et(
 pl

otD
ata

 : P
lot

Da
ta"

*",
 of

fse
t :

int
"*"

) :
 vo

id

QG
rap

hic
sIt

em

+Q
Re

ct
bo

un
din

gR
ec

t()
+Q

Pa
int

erP
ath

 sh
ap

e()
+p

ain
t(Q

Pa
int

er*
 pa

int
er

)
...

QG
rap

hic
sV

iew

-co
nta

ins

-ha
s a

-co
nta

ins
-ha

s a

-tit
le_

-co
nta

ins

-ha
s a

-le
ge

nd
_

 12

Every class in the Plot module inherit a Qt Graphics component. The PlotGraphicsView
inherits the QGraphicsView and all other classes inherit QGraphicsItem. Figure 6 displays the
complete class diagram of the Plot Module.

PlotGraphicsView
PlotGraphicsView is the main view of the plot however; it also handles the creation of the
plot items (Title, Legend, Curve, Axis and Grid) by supplying each item with a corresponding
container. Each time the view needs to be updated (by resizing it for instance) the updateItems
function is called. This function resizes the curve area (the area covered by the axes) by
calculating the margins needed for all axes, the title and the legend. Finally, the items
themselves are updated using the margins calculated. The actual updating the items are not
done directly, but instead, Qt puts them in a queue when the update function of the items gets
called. Items in the queue are then updated when possible. Since updateItems is called very
often when resizing, much effort has been spend in order to make it as fast as possible.

Title, Legend
These plot items handles the drawing of the title and the legend using the margins specified
by PlotGraphicsView. The legend also calculates inner margins by looking at the number of
curves in the plot. Both classes are optional since it’s not always necessary to have them.

Curve, Axis, Grid
These classes handle the drawing of the visible plot items using the specified data containers
(CurveData, AxisData and GridData). In addition, they are supplied with margins from
PlotGraphicsView in order to calculate the necessary point translations and locations. They all
inherit QGraphicsItem to allow for drawing specific functions called by Qt. Before painting
rotation and translation operations are made on a 2-dimensional transformation matrix.

 13

6.2 Sequence Diagrams
This section contains sequence diagrams of 3 critical parts of the code, the creation of a curve
and a map in the PlotData object and the update procedure of PlotGraphicsView object.

They are explained in detail below.

6.2.1 Create Curve

[for each yData]

[if yDataChanged=true]

opt

[if xDataChanged=true]

opt

loop

 : ResultsChooserView : PlotData

 : Curve

 : Axis

 : Axis

 : Grid

storeData(name=xName, source=xSrc, destination=xDest, dataIndex=xIndex)1:

storeData(name=yName, source=ySrc, destination=yDest, dataIndex=yIndex)3:

createCurve(name=curveName)5:

2:

4:

add to list6:

add to list7:

add to list8:

add to list9:

10:

[for each yData]

[if yDataChanged=true]

opt

[if xDataChanged=true]

opt

loop

Figure 7: A sequence diagram of the create curve operation.

As can be seen in Figure 7, the creation of a curve in the PlotData container will allocate 3 or
4 plot items, a curve, a grid and 1 or 2 axes depending on the number of storeData calls that
have been made. The storeData call saves the data in a temporary buffer in the PlotData
object. This data is then copied to the curve item when createCurve is called. Note that the
sequence diagram first calls storeData with x and then loops through each y, however, it’s
also possible to do it reverse, thus, first by calling y and then looping through each x. This
sequence can be clarified with an example: suppose the user wants to plot 2 curves, cylinder
temperature and pressure as a function of the crank angle. Therefore, the user will create a top
tree item (crank angle) and two leaf items (temperature and pressure) in the
PlotResultsChooser. This will generate one storeData call for the crank angle and two
storeData and createCurve calls in the loop, creating 2 curves, 2 grids and 3 axes.

 14

6.2.2 Create Map

[if displacement=false]

opt

 : PlotChooserView : Component : PlotData

 : Map

createCompressorMap(name=cName, compressor=compID)1:

storeData(name=flowName, source=map, destination=xyData, dataIndex=xyIndex)2:

storeData(name=effName, source=map, destination=zData, dataIndex=zIndex)3:

compID = ID()4:

storeData(name=flowName, source=Component, destination=xData, dataIndex=xIndex)5:

storeData(name=flowName, source=Component, destination=yData, dataIndex=yIndex)6:

add to list7:

8:

[if displacement=false]

opt

Figure 8: A sequence diagram of the map creation operation.

Creating a map is different than creating a curve since the data storage operations are made
within the createCompressorMap or createTurbineMap calls. The reason for this is that maps
have predefined x and y axes, therefore making it unnecessary for the user to make such a
choice. The sequence diagram shows the creation of a compressor map. Note that the first 2
storeData calls stores the actual map data, whereas the optional storeData calls stores the
operation curve. The storing of the data is done in the same way as curves, in a temporary
buffer and then copied to the map. Figure 8 shows the map creation operation.

 15

6.2.3 Update Plot

Figure 9: A sequence diagram showing the Update Plot operation.

The plot is updated when the PlotGraphicsView object receives a resize event. This is
automatically made by the signal slot mechanism in Qt. Afterwards, the outer margins and the
font size are calculated depending on the new size of the view. The view will then iterate over
all axes in order to calculate their positions and sizes. Finally, all the plot items are updated
using the offsets previously calculated. These operations can be seen in Figure 9. Note that the
updateLimits call also puts the corresponding item on the update queue. These items are then
redrawn automatically when Qt finds an opportunity to do so.

[fo
r e

ac
h

gr
id]

lo
op

[fo
r e

ac
h

cu
rv

e]

lo
op

[fo
r e

ac
h

ax
is]

lo
op

[fo
r e

ac
h

ax
is]

lo
op

[if
ax

is=
ho

riz
on

ta
l]

[el
se

 if
ax

is=
ve

rtic
al]

alt

 : P
lo

tG
ra

ph
ics

Vi
ew

 : P
lo

tV
ie

w
 : P

lo
tD

at
a

 : C
ur

ve
 : A

xis
 : G

rid

up
da

teL
im

its
(m

inL
im

it=
w

idt
hO

ffs
et

, m
ax

Lim
it=

he
igh

tO
ffs

et)
13

:

up
da

teL
im

its
(m

inL
im

it=
w

idt
hO

ffs
et,

 m
ax

Lim
it=

he
igh

tO
ffs

et)
11

:

14
:

he
igh

tO
ffs

et
= c

alc
ula

teH
eig

ht
Of

fs
et

(a
xis

Da
ta=

cu
rre

ntA
xis

, o
ffs

et=
he

igh
tO

ffs
et)

7:

w
idt

hO
ffs

et
= c

alc
ula

teW
idt

hO
ffs

et(
ax

isD
at

a=
cu

rre
ntA

xis
, o

ffs
et=

w
idt

hO
ffs

et)
8:

up
da

teL
im

its
(m

inL
im

it=
w

idt
hO

ffs
et,

 m
ax

Lim
it=

he
igh

tO
ffs

et
)

9:

12
:

10
:

cu
rv

es
 =

nu
mb

er
Of

Cu
rv

es
()

5:

gr
ids

 =
nu

mb
er

Of
Gr

ids
()

6:

ax
es

 =
nu

mb
er

Of
Ax

is(
)

4:

ma
rg

in
= c

alc
ula

te
Ma

rg
in(

)
2:

fo
ntS

ize
 =

ca
lcu

lat
eF

on
tS

ize
()

3:

[if
ax

is=
ho

riz
on

ta
l]

15
:

re
siz

eE
ve

nt(
ev

en
t=

e)
1:

[fo
r e

ac
h

gr
id]

lo
op

[fo
r e

ac
h

cu
rv

e]

lo
op

[fo
r e

ac
h

ax
is]

lo
op

[fo
r e

ac
h

ax
is]

lo
op

[el
se

 if
ax

is=
ve

rtic
al]

alt

 16

6.3 GUI Forms
This section contains the GUI forms for the plot wizard. The tool used to create them was
QtDesigner which is supplied with Qt. It enables users to add various Qt widgets on forms
using a drag and drop interface. This allows for easy creation of graphical interfaces.
QtDesigner form-files can be compiled directly into the project using qmake (a qt compiler)
however, this feature was not used.

The wizard consists of 3 parts; a data selector, an item editor and a general editor. The parts
are accessed with the “back” and “next” buttons in the wizard however, in most cases; users
will only use the data selector since much of the work is done automatically by the code.

All parts are explained in detail below.

6.3.1 Data Selector

Figure 10: An image of the Data Selector page in the Results Viewer wizard.

The data selector is the first page in the wizard. This is shown in Figure 10. It enables the user
to choose the data that has been outputted by ICES from the ModelResults object. The left
tree contains the data that can be used for plotting and the right tree contains the data that has
been chosen for the desired plot. By using the add data buttons the user can add the selected
data in the left tree to the desired destination, x or y, in the right tree.

 17

6.3.2 Item Editor

Figure 11: An image of the Item Editor page in the Results Viewer wizard.

The item editor, shown in Figure 11, lists the items in the tree to the left, which have been
created from the selected data in the data selector. They are grouped by their respective types;
curves, axes, grids and maps. Selecting an item in the tree will show a widget to the right
where modification of the item can be made. These item modification widgets are also used
when the user wants to modify a specific item in the plot view.

 18

6.3.3 General Editor

Figure 12: An image of the General Editor page in the Results Viewer wizard.

The general editor is the last page in the wizard. This widget allows the user to change non-
item specific properties of the plot, such as title and legend. These options can be accessed in
the plot view as well. Figure 12 displays this page.

6.4 Design Patterns

A future goal has been to create a stand alone plotting application similar to this project. This
follows that there should be much gain - in terms of cost and time - of being able to reuse
much of the code created with this project. Therefore the main design principle used for the
duration of the project has been to design the code as generically as possible. In order to fulfil
this goal, a few design patterns have been applied to the design.

The graphical classes within Qt have a Model/View architecture to manage the relationship
between the data and the way it’s presented to the user. This is a simpler case of the
Model/View/Controller pattern in which the Controller part has been embedded into the
View. Note that this does not abandon the separation concept since the data part is still
separated from the view. The Model is the interface that views use to access its underlying
data and the view obtains items from the Model and presents them to the user. Since the
Controller now is embedded into the View, the code uses the Qt signal/slot system in order to
communicate with the different parts e.g. the views with the models. Qt also introduces the

 19

concept of delegates. These improve the way users can customize the way the data is edited,
however, no such widgets were applicable for this project. In this design the storage module
can be regarded as the Model and the GUI and Plot modules are the Views.

The graphical items in the plot view are parts of the whole drawing area. Therefore, these
items have been structured as a simple composite pattern – a tree with a root node (the
drawing area) and its sub items (curves, axes and grids). In order for the QGraphicsView to
draw its items all sub items must inherit the abstract class QGraphicsItem. Three functions are
implemented. The first is the paint function. This function gets called by the QGraphicsScene
class when the item has been scheduled for an update. The second is the boundingRect
function. This function returns a QRect structure (a rectangle) which tells the scene roughly
where the item is located. By roughly, the meaning is that not all items are rectangular. A
circle item would for example return a rectangle with its width and height equal to its
diameter. The last function is the shape function which returns a QPainterPath structure. This
structure is a list of shape objects, such as rectangles, circles or lines, that all cover the whole
item. The reason for having both boundingRect and shape is that boundingRect is generally
much faster and can be used for fast checking of collisions between QGraphicsItems.
Meanwhile, the shape function is much more precise.

The custom made widgets that handle the modification of plot items (CurveView, AxisView,
GridView, MapView and PlotGeneralView) have two things in common. Firstly, they contain
a function that updates the widget using the storage object received and secondly, they all
need to save the current state that has been chosen by the user. Therefore, all these widget
classes implement a decorator pattern. The decorator is the abstract class
PlotPropertiesWidget. This is used both by the wizard and the plot view.

6.5 Design Changes
Even though much effort has been put on the design of the code there were still some parts of
that needed to be changed. When the project started the official version of Qt was still 4.1.
This version did not contain the new graphics library that has been used for this project.
However, a release candidate of version 4.2 was available. This version did contain the
libraries needed. Although, using the old version 3 of Qt with the old graphics classes would
have been possible but since ICES GUI had been developed by the later version, this was not
an option. The release candidate version however contained some bugs and as time passed by
and new official versions were released, minor changes were made to the library which in turn
affected the code - mostly for the plot view. These changes did not however change the design
drastically, only functions were affected.

The first version of the design only contained a Map class instead of two classes inheriting the
Map class. However, in the coding phase it became clear that using inheritance was a
necessary concept since a compressor map and a turbine map differs in many ways. Using this
structure also makes it easier to add new map types and modifying the existing ones. Reading
the data however, is done is the same way by both map types and therefore this code was not
moved to the inheritance classes.

An issue that was discussed in the pre-study was the need of custom views of scalars (data
that remains constant during a calculation). These could have been added by the user and
displayed in a table structure. Therefore, the first design contained scalar views and table
widgets. This idea was postponed due to the time constraint within the project.

 20

6.6 Testing
A typical software test plan has not been created for this project, however, during
development; the code has been undergoing extensive testing. In order to make sure the tool
fulfils the requirements in the requirements specification, that it’s stable and that it’s usable on
typical machines and environments, both unit, integration, functional and performance testing
have been applied to the development phase. A typical workflow has been to implement a few
lines followed by a small test and then repeat these 2 steps. Large functions have been tested
more thoroughly with several different inputs.

The white box testing has been accomplished by unit and integration testing. An early
decision to manage the unit tests was to use an automated unit testing environment. There are
many of these available for the C++ language and the one selected for the duration of this
project was CppUnit which is open source and based on the popular JUnit for Java. The
reason for this was that it also contains a special extension usable on Qt developed code,
called QxTestRunner. This turned out to be a very good tool since it was fast, very flexible
and easy to use. The integration tests were done manually and mostly included testing
between the communication of the graphical classes and the storage module. This was also
done directly while coding.

The functional testing part has included black box testing. This was only done from a user
perspective and included two major parts. Firstly, many tests were made with the wizard. This
included tests to insure that the correct plot items were generated with the desired plot and
that the modifications made to the plot were stored accordingly. The second and largest part
included testing of the actual plot view. A large amount of different plots were generated
using many different models and parameters. To ensure their correctness they were compared
with the data viewer in ICES.

The final test made was performance testing. Since this plot view might include many items
there is a need to ensure fast drawing of the items in order to ensure usability. A large impact
on the performance of the plot view had to do with how the boundingRect and the shape
functions of the plot items were implemented. In the early phase of the project, they were
implemented in a manner which forced the view to update all the items even though only a
small section of the view had been changed. Even though the view was indeed very fast due
to Qt:s fast drawing framework, there was a noticeable change of the performance after some
optimizing of the above functions when drawing multiple items. On the systems used for
development this change became noticeable with views with more than 15 curves in the same
plot, a case most applied to maps. However, this system was very modern at the time of the
writing and on slower systems the change might be more noticeable. The final performance
tests were made to the actual generation of the plot. A plot is generated when the user has
selected the data to be plotted in the wizard and press “next” or “finish”. This is a critical
performance dependent part since its dependent on much data throughput and generation. To
avoid unwanted waiting times the affected code have been optimized, especially for the map
generation since this is by far, the heaviest process. On the system used for development the
generation of 5 maps using standard settings takes under 0.5 seconds, a reasonable waiting
time considering only one map per plot is preferred.

6.7 Plot Examples
This section contains a few plots that have been generated with the post processor using
different ICES models.

 21

A plot showing the variations of the cylinder temperature and pressure during a cycle.

A plot showing the relationship between the cylinder temperature and pressure. These are the same data as the above diagram.

 22

A rich plot showing 4 relevant cylinder parameters in a cycle: mass, temperature, pressure, and volume. The legend is shown in the top-left
corner.

A plot showing temperature varying with the crank angle and with burned gas in a turbine volume.

 23

A plot showing a typical compressor map. Efficiency curves are colour coded. The black curve represents the operating curve in the current
cycle. The green circle represents the starting point. The ending point is red, but it is covered by the starting point.

A plot showing a displacement compressor map.

 24

A plot showing a single entry turbine map.

A plot showing a VGT turbine map.

 25

6.8 Future Work
The post processor is, in its current state, useful for viewing output from ICES. However,
there are additional features that can be implemented in order to help the users even further.
Many applications today offer many ways of achieving the same goal. For example, when
saving a file in a word processor, users can use the “file” menu, click the “save” button in the
tool bar or press “Ctrl-S”. As of its current state, the plot view operations, such as item
properties or changing plot mode, can only be accessed from a menu. Adding a tool box and
keyboard shortcuts to the same actions will improve usability further.

The plot view can handle many curves. However, when dealing with multiple curves its often
not obvious which curve belongs to which axes even if the axes colours varies. In order to
solve this there is a need to visually connect the axes with each other within the view. In
addition, when dealing with curves with few data points, there is sometimes a need to make
the curve smoother. This can be solved by using cubical splines for instance.

It’s sometimes desired to make further calculations on the output with external applications
such as Microsoft Excel. In its current state; the post processor only supports exporting of
visual data such as printing, exporting to an image and the clipboard. A feature which allows
the user to export the data to an external resource, such as a normal ASCII file, is often
desired. Also, exporting the data itself to the clipboard in a convenient table structure might
also be useful when working with Excel.

The last and most major issue for future work is a stand alone plotting application. As of now,
the plotting tool can only be accessed within ICES GUI. However, the code has been
generically structured and developing an external application using the existing components
should not pose any difficulties. Many new concepts do however arise, such as importing of
data. This can and should be doable in many ways and the imported data structure often
varies, thereby making this a large project.

7 Conclusions
Even though the project hasn’t strictly followed any popular software development process,
the use of an iteratively based workflow is very much preferable over the standard waterfall
model. This is due to the fact that it’s almost impossible to perfect one phase before moving
on to the next in one attempt. This project did indeed benefit from adding new and improving
existing parts over several iterations. The reason for this is that it’s very hard to get a
complete picture of all the classes and functions needed in order to fulfil the requirements.
However, a solid fundamental design is preferable since this is a good method of getting a
complete picture of the design. It also reduces future refactoring, thereby saving time.

QtDesigner has also proved to be a time saver. GUI programming can often be a tedious
exercise since it often requires developers to write a small amount of code followed by a
compile step to visually inspect the results. By using this tool it’s easier to get an overall
picture and thereby making the process of selecting the appropriate widgets and layouts faster.

This project has implemented a few design patterns where applicable. As mentioned earlier, a
future project is to create a stand-alone plotting application. This is an example of a good use
of design patterns since these encapsulates the code and makes it easier to extract and
implement the necessary parts for future software development.

 26

Testing has been a large part of the project and has included many types of different tests.
Even though most of the tests were done manually, the use of CppUnit and especially the use
of QxTestRunner proved to be a very efficient tool for unit testing. This has assuredly helped
the process of finding bugs. However, as with all unit testing there are limits as they do not
catch all errors in a program since they only test the units or classes themselves. Integration
and performance errors cannot be efficiently found using this method. Therefore, the use of
integration and black-box testing provided an efficient method of finding these.

 27

8 Dictionary

Crank angle – the position of the crank shaft in a combustion engine. In a 4-stroke engine a
full cycle is composed of two revolutions, hence 720 degrees.

Cross-platform – a software implementation that’s designed to work on multiple platforms
such as Windows and Linux.

Delegate – a dynamic widget which renders itself. This is used in order to provide a custom
editing interface for the developer.

Extrapolation – the process of constructing new data points outside a known set of data
points.

Interpolation – the process of constructing new data points within a known set of data points.

Legend – an overview of the data series or curves present in a plot.

Signal/Slot system – the standard communication system used by Qt. Signals or events, such
as a mouse click are attached to slots. The slot is a function which is to be implemented to
provide an appropriate action for the signal.

VGT – Variable Geometry Turbine. A turbine with variable intake blades which regulate the
intake pressure and thereby the rotation speed.

Widget – a graphical interface control which the user interacts with, such as a button or a
window.

 28

9 Sources

[1] Qt Reference Manual, commercial edition, version 4.2.3
http://doc.trolltech.com/4.2

[2] C++ Library Reference
http://cplusplus.com/reference/

[3] Sundin, Lars: ICES Manual, version 1.5-026

[4] Gamma, Erich: Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Professional, 1994

[5] Stroustrup, Bjarne: The C++ Programming Language, Addison-Wesley Professional,
1997

 29

http://doc.trolltech.com/4.2
http://cplusplus.com/reference/

Appendix A

Requirements Specification

This document lists the minimum requirements for the post processor within ICES GUI.

Functional Requirements

R1: The tool must be able to 2D-plot ICES output parameters with the crank angle or with any
other ICES output parameter.

R2: The tool must be able to plot all compressor and turbine map types supported by ICES.

R3: The tool must be able to plot any number of curves or maps within a plot.

R4: The tool must support a number of visual curve options. These are: colour, visual markers
and dashed lines.

R5: The tool must support a number of visual axis options: These are: colour, location (top
and bottom or left and right), minimum limit, maximum limit and minor steps.

R6: The tool must support the use of a grid, plot title and/or legend.

R7: The tool must support graphical exporting of the plot view to a file. File types are: PNG,
JPG and BMP.

Non-functional Requirements

R8: The tool must be an extension of ICES GUI and must be accessible in this environment.

R9: The tool must be usable in regard to performance on a typical machine used today. A
typical machine has the following specifications: Pentium 4/M 1.6GHz processor, ATI
Radeon 7500 32MB graphics adapter, 512MB RAM and 10MB free disk space.

 30

Appendix B

Time Plan

Planned and Actual times are in working days.

Iteration Phase Assignment Planned time Actual time

1 Basic Design 14 14
 Implementation
 Curve reading/creation 3 4

Plot graphics 10 20
Wizard 15 15

 Storage 2 1
Func. Testing 1 1

2 Additional Design 10 8
 Implementation
 Map reading/creation 40 52
 Plot item options 4 3
 Func. Testing 1 1

3 Implementation
 Plot item options 3 2
 Plot title/legend 5 3
 Mass Testing 2 2

Totals: 110 126

 31

Appendix C

This section shows the part of the ICES GUI manual describing the graphical post processor.

 32

 33

 34

 35

 36

 37

 38

